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Fully non-linear two-layer flow over arbitrary topography
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Abstract. Steady, two-dimensional, two-layer flow over an arbitrary topography is considered. The fluid in each
layer is assumed to be inviscid and incompressible and flows irrotationally. The interfacial surface is found using a
boundary integral formulation, and the resulting integrodifferential equations are solved iteratively using Newton's
method. A linear theory is presented for a given topography and the non-linear theory is compared against this to
show how the non-linearity affects the problem.

1. Introduction

The problem of free surface fluid flow over obstacles has a long and well documented
history. The many variations this problem can take have been used to model situations in
engineering and the atmospheric and oceanographic sciences.

The simplest form the problem can take is when the flow consists of a single layer of
inviscid, incompressible fluid flowing over an obstacle. Kelvin [1] presented a linear theory
for the steady form of this problem. Much work since then has involved the use of
submerged singularities to describe flow over obstacles. Wehausen and Laitone [2] provide a
good review of the literature on this subject.

More recently, boundary element methods have been used to solve the exact non-linear
problem. However, in most cases, the specific geometry involved in the problem has been
used to simplify the equations. Arbitrary bottom profiles are thus not generally permitted.
For example, Forbes [3] and [4] considered flow of a single fluid layer over a semi-elliptical
obstacle on the stream bed, and used conformal mapping to satisfy the bottom condition
exactly. Forbes and Schwartz [5] considered flow over a semi-circular obstruction and Dias
and Vanden-Broeck [6] studied the flow over a triangular weir. An exception is the work of
King and Bloor [7] who in fact allowed an arbitrary bottom topography and a single layer of
inviscid, incompressible fluid. A generalisation of the Schwarz-Christoffel transformation
was used and the resulting integral and integrodifferential equations were solved numerical-
ly. We present a simpler approach and extend it to the case of two fluid layers, so that the
single layer problem is the special case when the upper layer has zero weight. Also popular
recently are asymptotic theories of fluid flow in channels. For example, Grimshaw and Smyth
[8] solved a forced Korteweg-de Vries equation describing weakly non-linear resonant flow of
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a stratified fluid over an obstacle, and Shen [9] investigated the problem of near critical flow
in a channel with an inviscid fluid of constant density using a similar forced Korteweg-de
Vries equation.

In considering the problem of flow over obstacles in a meteorological or oceanographic
situation, a single layer approximation becomes insufficient, as the fluid is now continuously
stratified. The next step in modelling an atmospheric situation could well be considered to be
a two-layer system of fluid where the fluid in each layer is inviscid and incompressible. One
could envisage this configuration to occur in the atmosphere when, for example, a mass of
cool relatively dense air is expelled underneath a mass of warm less dense air in the
downdraft associated with a thunderstorm. This is the situation modelled in this paper.

Shen [10] considered a similar two-layer system, which was solved again using a forced
Korteweg-de Vries equation to approximate the governing equations. However, the fully
non-linear problem remains unsolved. An associated problem is that of interfacial waves
between two inviscid fluids of constant density. In this case, the mechanism of generation of
the wave is disregarded and the limiting periodic wave profile is sought. It is now known that
this limiting profile is a mushroom-shaped structure as observed by Grimshaw and Pullin [11]
and Turner and Vanden-Broeck [12]. Earlier, however, Holyer [13] had been only able to
obtain a limiting wave profile with a vertical tangent; no overhang could be found, since this
was not permitted in her numerical technique.

In Section 2 we formulate the problem as a system of three coupled integrodifferential
equations. These equations govern the fully non-linear flow over arbitrary topography of two
layers of inviscid, incompressible fluid. A linear solution is presented in Section 3, while in
Section 4, the integrodifferential equations are discretised and solved iteratively, extending a
technique used by Forbes [3]. Section 5 contains the results of our computational experi-
ments where the governing parameters were varied. We also consider the drag produced by
the obstacle. In Section 6, we present a summary and discuss further areas for research.

2. Formulation

We consider a system of two layers of constant density fluid, one on top of the other, flowing
over arbitrary topography. The profile of the topography is given by y = B(x) where x and y
are horizontal and vertical coordinates, respectively. The upper fluid layer is bounded by a
rigid lid. The flow is two-dimensional, irrotational and far upstream is uniform. We let
subscript 1 refer to variables in the upper layer and subscript 2 refer to variables in the lower
layer. We then denote the upstream depth of each layer by H, and H2 and the upstream
horizontal velocity in each layer by c and c2. Densities, velocities and pressures in each
layer are pj, q, and pi, j = 1, 2. The interface between the two fluids, which is unknown at
the outset, is given by y = S(x). Only waves that are stationary with respect to the mountain
are considered, so partial derivatives with respect to time are taken to be zero. The fluid
system is shown schematically in Fig. 1.

The variables above are non-dimensionalised using H2 as the the length scale and c2 as the
velocity scale. The lower layer then has an upstream uniform speed of 1 and an upstream
uniform height of 1. We define the four dimensionless parameters which describe properties
of the flow,
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Fig. 1. Schematic diagram of the two layer fluid system flowing over an arbitrary obstacle y = B(x). The unknown
interface y = S(x) is to be obtained, and once known, enables any other quantity in either fluid layer to calculated.

F2 - g the Froude number in the lower layer,

y = l the ratio of upstream fluid speeds,

C2 the ratio of densities,(2.1)
D - the ratio of densities,

P2

H1A = H the ratio of upstream fluid heights,

and two dimensionless parameters which describe properties of the obstacle, h the maximum
obstacle height, and L the obstacle half length. The following work proceeds purely with
non-dimensionalised variables.

Let A, j = 1, 2 be the velocity potentials in each layer, so, uj = Oj/ax and v = Oj/l y
where uj and vj are, respectively, the horizontal and vertical components of the velocity
vectors qj. Then within each fluid, the continuity equation yields

V2j = O, j = 1,2, (2.2)

and on the upper boundary, the condition of no penetration is

VOl n=O on y=A+l. (2.3)

Similarly, at the interface y = S(x), there is no fluid exchange and so

V0i n=O for j=1,2 on y=S(x). (2.4)

Again for the bottom we have the no penetration condition

V42'n=O on y=B(x). (2.5)

At the fluid interface, continuity of pressure, coupled with the Bernoulli equation in each
layer of fluid gives the interface condition
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1 1
- F2(q2- Dq 2) + (1- D)S(x) = F2(1-DY2) + 1-D on y = S(x). (2.6)2 2 q+1x 2 21-D on y=S(x) (2.6)

The upstream conditions are

q1 -yi, q2 -i, S(x)-1 as x--oo. (2.7)

Equations (2.2)-(2.7) then are the equations to be solved.
We introduce the complex variable z = x + iy, and then the complex velocity potential is

wj = ji + ij where Aq,, j = 1, 2 is the stream function in each layer. The wj are analytic
functions of z because hi and qi satisfy the Cauchy-Riemann equations, since the fluid is
incompressible and flows irrotationally. The conjugate complex velocity in each layer is given
by dwj/dz = u- ivj.

Previous studies on flow over specific topographies (for example, Dias and Vanden-Broeck
[6] (triangular wier), Forbes [3] and [4] (semi-elliptical obstacle) and Forbes and Schwartz [5]
(semi-circular obstacle)) have used an inverse formulation to enable a simpler representation
of the free surface boundary conditions involved in each problem. Typically 4j and '>j defined
above would be chosen as the independent variables so that equation (2.6) would then be
satisfied on the known location i 2 = 1 rather than the unknown y = S(x). King and Bloor [7]
also used an inverse technique to calculate flow over arbitrary topography. However, as
noted in the Introduction, their formulation involved the use of a rather complicated
Schwarz-Christoffel transformation.

To avoid such complication in presenting a method capable of obtaining solutions for
arbitrary topography we use a direct method, in which the unknown interface is calculated
using integrodifferential equations for the complex velocity on the boundaries and the
interface of the fluid system. In formulating these equations an arclength, s, is used to
parametrise the interface. This arclength must satisfy

(dx) 2 dY 2 1 (2.8)

The coordinates of the interface are then (x, S(x))= (x(s), y(s)) and the velocity
components on the interface are given by

dx d dy d,
uj = ds ds and v d ds, j=1,2

and Bernoulli's equation (2.6) on the interface becomes

2 F2 s) - D( ) ] + (1- D)y(s) = F2(1- D . (2.9)

The integrodifferential equations are obtained using Cauchy's integral formula. The first
equation is derived by reflecting the upper layer (layer 1) about the horizontal top y = A + 1
of the two fluid system. This produces an image fluid region, bounded by the reflection of the
interface y = S(x) in the line y = A + 1. In this region equation (2.3) requires that the vertical
velocity satisfy the reflection condition

vl(x, y) = -vl(x, 2A + 2 - y) .
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We apply Cauchy's integral formula to the complex function X,(z) = dwl /dz - y to give

XI(z) dz
r Z(S) 0. (2.10)

Here the path F consists of the interfacial surface with a semi-circular path of vanishingly
small radius excluding the point z(s), the entire image surface and the vertical lines x = +L
with L --> . The integration variable z represents any point on the contour F. In the limit
L --* o, the contributions from the two vertical lines become zero. Let 0o be the value of the
arclength at the moveable point z(a) on the contour F; then from equation (2.10) we have

*i.r7X(Z(s) + i(A + 1)) X(Z(-) + i(A + 1))Z'(o) do
rXl (Z(s) + i(A + 1))f= z(o) -z (s)

_ 7o Xi(Z(o') + i(A + 1))Z'(o) do,
-_ Z(() - Z(s)

where Z(o-) = z(or) - i(A + 1) and Z denotes complex conjugate of Z. Note that the first
integral in the above equation is singular in the Cauchy principal value sense as ---*s.

Taking the imaginary part of this equation then gives

-rx' s)( )]= (4(o) - yx'(oU))(y(s) - y(o.)) - 'y'(o)(x(o-) - x(s)) d
(x(o) - X(s))2 + (y(u) - y(s))2

V (f;(o) - yx'(o-))(Y(o-) + Y(s)) - yy'(o-)(x(o-) - x(s))
f- (X(O() -X())2 + (Y(o) + y(s))2

where Y(s) = y(s) - h - 1.
A similar method as outlined above is used to derive two integrodifferential equations for

the lower layer. The method of images cannot be used in any simple way for this case and so
the contour, entirely in the lower layer, consists of the interfacial surface, the bottom surface
y = B(x) and the vertical lines x = +L with L -> o. The first of these equations has added to
the contour a semicircle of vanishingly small radius centred on the point z = z(s) on the
interfacial surface and is given by

X2 (z) dz

rZ - (S) = = ,

where X2 (z) = dw2/dz - 1. Taking the imaginary part gives

[x(s),s) - 11= (,(o-) - x'(a))(y(O) - y(s)) + y'(o)(x(o-) - X(S))
74x'(s)1k~ 11 r[X ( =(x(--)- X(s))2 + (y() - y(s))2 do

V- B'(x)(x -x(s)) + (B(x) -y(s))(u2 (x)(1 + B'(x) 2) -_ 1)
(X- _x(s))2 + (B(x) -_ y(s)) 2

The second of the two equations in the lower layer has added to the contour a semicircle
of vanishingly small radius excluding the point z = z* = x* + iB(x*) on the bottom surface
and is given by

423
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[u(x*)- 1-- (02(a) - x'(o))(y(-) - B(x*)) + y'(o)(x(-) - x*) do
'7r[u2 (x *)-1] = (x((o) - x*) 2 + (y(o) - B(X*)) 2

B'(x)(x - x*) + (B(x) - B(x*))(u2(x)(1 + B'(x) 2) - 1)
- ff dx. (2.13)

(X - X*) 2 + (B(x) - B(X*))2

Note in equation (2.12) the first integral has a Cauchy principal value singularity at o(= s
and in equation (2.13) the second integral has a Cauchy principal value singularity at x = x*.

To find the surface y = S(x), we need to solve the three coupled integrodifferential
equations (2.11)-(2.13) subject to the Bernoulli equation (2.9), the arclength condition
(2.8) and the upstream asymptotic conditions (2.7).

Once this surface is known, we may compute other quantities of interest, as will be shown
in Section 4. For example a measure of the energy lost as the fluid flows over the obstacle is
given by the nondimensional drag G, where

G = p2B'(x) dx.

Here we have assumed that the obstacle is in the interval -L - x - L and P2 is the pressure
evaluated on the bottom y = B(x). Using the Bernoulli equation on the bottom surface, this
is written more conveniently as

-F2 L
G 22 f u2(1 + B'(x)2 )B'(x) dx . (2.14)

3. The linearised solution

An approximate solution to the equations of motion may be derived for the case when the
dimensionless mountain height h is a small quantity. We then express the interface and
velocity potentials as the regular perturbations

S(x) = 1 + hS,(x) + O(h2 ) (3.1)

1b(x, y) = yx + h4ll(x, y) + O(h2 ) (3.2)

+2(x, y) = x + h42 1(x, y) + O(h2 ). (3.3)

Here Sl(x), Ql1(x, y) and 021(x, y) are to be determined, and for a symmetric mountain
profile given by

B(x) = hf(x) = h M(k) cos kx dk (3.4)

where M(k) determines the mountain profile, may be shown to have the forms

S(x) = a(k) cos kx dk (3.5)
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ol (x, y) = b(k) cosh[k(y - 1 - A)] sin kx dk (3.6)

2 1 (x, y) = f (c(k) cosh[k(y - 1)] + d(k) sinh[k(y - 1)]) sin kx dk. (3.7)

The linearised forms of the conditions (2.3)-(2.6) then yield

F2kM(k) sinh kA
a(k) = E(k)

where

E(k) = (F2k cosh k - (1 - D) sinh k) sinh kA + y 2DF2k sinh k cosh kA, (3.8)

with similar expressions for b(k), c(k) and d(k). The dispersion relation for the linearised
problem is given by E(ko) = 0, where k0 is the wavenumber of the downstream waves. In this
paper, we consider the smooth mountain profile

f(X) = {2(1 + cos x/L) -L x (3 L9)
A) O otherwise.

This profile was chosen for its ease of use with Fourier transforms for the linear theory and
in this case gives

irF 2 sin kL sinh kA
a(k) =L 2(7r2 L 2 _ k2 )E(k)

The linearised solution (3.5)-(3.7) possesses a wave train in the lee of the mountain only
when the dispersion relation has a nonzero real solution, that is when

F2( D + A)
2F(y

2 D + A)< 1. (3.10)
A(1- D)

It is convenient to express equation (3.5) as the difference between two integrals in the
form

S. )I_ F2 [(J sin[k(x + L)] sinh kA dk sin[k(x - L)] sinh kA dk] .(311)
24L 2 r (Ir 2/L 2- k2 )E(k) dI (7r2 IL2 _-k2 )E(k)

Each integral in equation (3.11) has the same form, which is convenient for calculation
purposes, but is singular with poles on the real axis at k = -+k. In order to obtain an
interface profile with an oscillatory nature downstream of the obstacle, but no waves
upstream, we interpret the integral as the Cauchy principal value with the addition of the
contributions by integrating around the singularities along a semicircular path of vanishingly
small radius passing below the singularities at k = -+k. In the case when the fluid depths far
upstream in each layer are equal (A = 1) the dispersion relation shows that the wavelength
associated with S (x) downstream of the obstacle will remain constant in the linear theory if
F2(y2 D + 1)/(1 - D) is a constant.
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The linearised wave drag is calculated by substituting equations (3.3) and (3.7) into the
nonlinear expression (2.14). We obtain

F2h2 r4T(k,) sin2 koL
G = L4(r2/L2 _ ko)2 E'(ko) (3.12)

where

T(k) = sinh kA[(D - 1) cosh k + F2k sinh k] + y 2DkF2 cosh kA sinh k

and the terms O(h3 ) have been ignored.

4. Numerical method

In this section we present the numerical method used to solve approximately the system of
equations (2.7)-(2.9) and (2.11)-(2.13). We will solve for the interfacial boundary at N
equally spaced points s, s2, . . . ,S with the points s and SN representing - and ,
respectively. This numerical method is similar to that used by Forbes and Schwartz [5] and
Forbes [14], and need not be described in great detail here.

In order to discretise the integrodifferential equations it is also necessary to choose grid
points on the bottom y = B(x). Here we choose to take densely spaced points over the region
where the mountain profile changes more rapidly with x. For example, in the case of the
profile given by equation (3.9) this region of more densely spaced points will be -L - x - L.
On the bottom we therefore take M points, xl, x 2, . ., xM not necessarily equally spaced,
again with the points xI and XM approximating -o- and , respectively.

The singularities in each of the integrodifferential equations are subtracted and the
singular integrals are thus replaced by non-singular integrals plus logarithmic terms. The
integrodifferential equations are evaluated at N - 1 midpoints given by, Sj+/2 = 2 (sj + Sj+),
j = 1, .. . , N - 1 in the case of those solving for quantities on the interface and at the M - 1
midpoints given by, xj+/ 2 = (xj + xj+l), j = 1,. . . M - 1 for the equation solving for the
horizontal velocity component on the bottom surface. Once the vector of values y'(sj),
j = 1,..., N is known, the remainder of the variables in the problem may be calculated.
Newton's method is used to solve for these quantities as follows:

1. Make a guess at y'(s2 ), . . , y'(SN), noting we take y'(sl) = 0 to satisfy the condition of
uniform flow at upstream infinity. The initial guess may be a vector of zeros, the
corresponding y'(si) values calculated from the linear solution or the y'(sj) calculated
from a previous non-linear solution.

2. Integrate y'(sj) numerically to get y(sj), j = 2, . . . ,N using the upstream condition

y(--o) y(sl) = 1.
3. Calculate x'(sj), j= 2,..., N using equation (2.8) and integrate as in (2) using the

upstream condition x(s,) = s .
4. Solve the discretised version of equation (2.11) to find 4l(si). We also need the condition

4IA(sl) = y to give as many equations as unknowns.
5. Calculate 02(sj) using the Bernoulli equation (2.9) on the surface.
6. Calculate u2(xj) on the bottom surface using the discretised version of equation (2.13). At

this stage all the variables are known.
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7. We use the remaining integrodifferential equation (2.12) as a cost function, update the
values of y'(sj), and return to (2).

The iterations are terminated when some norm of the cost function is sufficiently close to
zero. At this stage all the quantities of interest on the boundaries are known. Since the
velocity potential in each layer is harmonic, we can now determine any other quantities at
any point in either layer through the use of Cauchy's integral formula (and possibly the
Bernoulli equation, for example to calculate the pressure at some point in either layer).

5. Numerical results

When the above scheme was implemented on the computer it was found, in most cases, to
converge in only a few iterations. Indeed, for mountains of height h = 0.001 the solution
took only two iterations and was found to trace the linear solution almost exactly for most
parameter values, confirming the accuracy of our method for small disturbances. It was also
found that in the case when the fluid depths far upstream in each layer were equal (A = 1),
the non-linear solution had waves with constant wavelength if the remaining parameters
were varied in such a way that the ratio F (y 2D + 1)/(1- D) remained constant. This
behaviour repeated that observed in the linear theory.

As the mountain height is increased the nonlinear nature of the problem starts to take
effect. Figure 2 shows a comparison of linear and non-linear results for the case when the
depths far upstream in each layer are equal ( = 1), the fluid speeds far upstream in each
layer are equal (y = 1), the density ratio of the layers is D = 0.7, and the Froude number in
the lower layer is F2 = 0.2. The mountain profile is that given by equation (3.4) with
h = 0.301 and f(x) given by equation (3.9) with L = 0.5. The amplitude of the non-linear
waves is far greater than that for the linear waves and also we note the compression of the
wavelength for this large mountain. This is consistent with the results presented by Forbes
and Schwartz [5].

Figure 3 shows how the effect of increasing the mountain height is to increase the influence

1.1 - (nxtI

X

Fig. 2. A comparison of wave profiles for the case A = 1, y = 1, F2 = 0.2, D = 0.7, L = 0.5 and h = 0.301. The
non-linear profile (solid line) differs greatly from the linear profile (dashed line) for this large mountain.

427

Vv7 



428 S.R. Belward and L.K. Forbes

x

Fig. 3. Non-linear wave profiles at various mountain heights for the case A = 1, y = 1, F2 = 0.2, D = 0.7 and L = 0.5.
The mountain heights are h = 0.101 (chain line), h = 0.201 (dashed line), and h = 0.301 (solid line).

of non-linearity on the problem. The amplitude of the waves increases in a non-linear
manner and the wavelength is compressed further as the mountain height increases.

In both Figs 2 and 3 we notice some inconsistencies in the last half wavelength downstream
and also the occurence of upstream waves ahead of the obstacle. This is due to the fact that
when the problem is solved numerically the interval over which we obtain a solution has to
be truncated from an infinite length to that of six to eight wavelengths. The reader is again
referred to Forbes and Schwartz [5] where the effects of truncating the problem at either end
of the interval are explained in greater depth.

Any non-linearity in a problem such as this can be illustrated by comparing the linear and
non-linear drag as the height of the obstacle is increased. Our expression for non-linear drag
(2.14) was found to agree with its linear counterpart (3.12) for small obstacles, and the
non-linear results continued to be reliable even for mountains of moderate height. However,
as the obstacle height was increased, we found the evaluation of the integral in equation
(2.14) to become increasingly sensitive to numerical error, caused by worsening loss of
significance errors. Instead we discuss the variation of downstream wave amplitude with
obstacle height. Figure 4 shows how the peak to trough amplitude A of the waves varies with
the obstacle height h, for two different obstacle lengths, L = 0.5 and L = 0.75, with the
remaining parameter values as mentioned above. The circles represent the amplitude of the
L = 0.5 solutions and the squares represent the amplitude of the L = 0.75 solutions. For
comparison purposes, we have also plotted the lines indicating how the amplitude of the
waves generated by the linear solution varies with mountain height, the black line
representing the L = 0.5 solutions and the grey line the L = 0.75 solutions. Again the
divergence of the linear and non-linear results for large h clearly highlights the non-linear
nature of the problem. For these parameter values the method failed to produce waves
greater than those for a mountain of height h = 0.326 when the mountain had half length
L = 0.5 or a mountain of height h = 0.321 when L = 0.75.

This figure prompts two important questions. Firstly, for mountains of half length L = 0.5
we notice that the amplitude of the downstream waves near mountains of height h = 0.120
appears to be higher than we might expect. This behaviour is also noted near mountains of



Two layer flow over arbitrary topagraphy

U.16

A

0.12

0.08

0.04

0

a

I

_ a
0

U *

I

0.1 0.2 0.3

h

Fig. 4. A comparison of the downstream wave amplitude produced by the non-linear theory (dots) and the linear
theory (lines) as the mountain height is increased for two different mountain lengths when A = 1, y = 1, F2 = 0.2 and
D = 0.7. The black line and black dots represent results for L = 0.5 while the grey line and grey dots represent
results for L = 0.75. The numerical method was unable to produce reliable results for mountains with heights
between h = 0.121 and h =0.131 when L = 0.5 and mountain heights between h =0.171 and h =0.201 when
L = 0.75.

height h = 0.170 when L = 0.75. The first question is then, why does the amplitude of the
downstream waves vary in this way? To answer this question we need to consider the work
by Forbes [4] in which drag free flows over an ellipse were investigated. It was found in the
non-linear theory that for any given ellipse height, there exist an infinite number of ellipse
lengths, behind which there are no downstream waves. This result was not entirely
unexpected as Lamb [15] showed this behaviour in the linearised theory. The linear theory
presented in this paper in Section 3 for the mountain profile given by equation (3.9) also
predicts such behaviour as well as predicting obstacle lengths for which the downstream
waves will have a relative maximum in amplitude. Forbes found that as the height of the
obstacle was increased in his non-linear theory, so the obstacle length had to be increased to
obtain the relevant wave free solution (see Fig. 3 in Forbes [4]). Thus, we expect that, to
obtain waves of a relative maximum in amplitude as we increase the mountain height, we
must also increase the obstacle length. On the other hand, if we increase the obstacle height
without increasing the obstacle length, we can expect to move through heights where we are
crossing curves on the obstacle height versus obstacle length plane on which we either have
wave free solutions or solutions with a relative maximum in amplitude. Thus, the curves in
Fig. 4 cannot in general be expected to rise monotonically, but instead may possess local
maxima and minima. Now, in Fig. 4, we are using constant mountain lengths of L = 0.5 and
L = 0.75. With the parameters as given above the linear theory predicts a relative maximum
in amplitude for an obstacle length of L 0.356. This set of solutions with a relative
maximum in amplitude obviously passes through the points L = 0.5 at an obstacle height of
h - 0.120 and L = 0.75 at an obstacle height of h 0.170 where in Fig. 4, the amplitude of
the waves is larger than we might otherwise expect from the solutions obtained for mountain
heights near these values.
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The second question Fig. 4 poses is why do the waves reach some sort of maximum height,
in other words, why does the method fail to compute waves higher than those for h = 0.326
when L = 0.5 and h = 0.321 when L = 0.75? We especially need to consider this question in
the light of work by Holyer [13], Grimshaw and Pullin [11] and Turner and Vanden-Broeck
[12] who each investigated limiting interfacial gravity waves. In these works solutions were
sought for waves without regard for their mechanism of generation and as such could be
investigated over an interval of a single wavelength. In our calculations we have had to
include an interval of six to eight wavelengths over the obstacle, so here the numerical grid is
much too coarse to obtain the accuracy one can gain by considering a single wavelength. The
maximum amplitude solutions we obtain resemble more closely those obtained by Holyer
[13] where the limiting wave was expected to have vertical tangents in its profile, rather than
those in Grimshaw and Pullin [11] where the limiting profile was subsequently shown to be
mushroom-shaped. Turner and Vanden-Broeck [12] found solutions to oscillate between
waves with a vertical section and waves with an overhang. We also note that the limiting
solutions presented in the latter two of the three papers above are not the maximum
amplitude solutions but are arrive at in a different manner than in steps of increasing
amplitude. Given our method of calculating the wave profiles and our inability to use large
numbers of points, it is not surprising to find our wave profiles falling short of those
generated in the papers above.

Figure 5 shows the effect of varying the ratio of fluid velocities y in each layer. Before
further comments are made, we note that equation (2.11) is invariant under the transforma-
tion y- -y and '(s)---> -(s). In other words, reversing the direction of fluid flow in the
top layer does not change the shape of the interface. Presumably, however, the solutions
obtained in the reverse flow case would be unstable in a time dependent model.

It is clear from Fig. 5 that both the amplitude and wavelength of the waves decreases as
the upstream velocity ratio is decreased. From equation (3.8) we can see that as the value of
y is decreased the value of ko will increase; thus the linear solution predicts the behaviour
observed in Fig. 5.

1 n _ /v 

X

Fig. 5. Non-linear wave profiles at different values of the ratio of upstream fluid speeds y, for the case A = 1,
F2 = 0.2, D = 0.7, L = 0.5 and h = 0.1. The profiles are for y = 0 (chain line), y = 0.5 (dashed line) and y = 1 (solid
line).
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6. Summary and discussion

A method of solution has been presented for calculating the two-dimensional flow over an
arbitrary topography of a two layer system of fluid. This arises in looking for a simple model
for atmospheric waves in the lee of a mountain.

The linearised solution in Section 3 yielded the important relationship (3.10) involving the
parameters F2 , y, A and D, that enabled us to predict when downstream waves were likely to
occur.

A fully non-linear solution was developed using a boundary integral approach, which when
discretised, gave us a set of three systems to solve. This set of equations was solved
iteratively using Newton's method, and the interface was found to consist of a wave free
region upstream of the obstacle, followed by a periodic wave downstream of the obstacle. A
check on our results was provided by comparing the results for the linear and non-linear
theories, which were found to be in very good agreement for small mountains. The
non-linearity became evident, however, as the obstacle height was increased and the
non-linear interface developed waves of an amplitude far in excess of the amplitude of the
waves of the linear interface. Our method was successful in calculating waves with a nearly
vertical tangent to them as in Holyer [13], and it is unreasonable to expect overhanging
waves as described in work by Grimshaw and Pullin [11] and Turner and Vanden-Broeck [12]
due to the relatively few points per wavelength we were able to employ. We note that such
waves may be unstable even if the steady equations predicted them.

As noted in the Introduction, Shen [10] has considered a similar two layer model for flow
over an obstacle using a forced Korteweg-de Vries equation. He however allows the upper
layer to be bounded above by a free surface, rather than the rigid lid used in the current
work. This difference in formulation makes comparison of the results obtained from this
forced Korteweg-de Vries theory with the results obtained from the fully non-linear theory
impossible, without reworking the asymptotic results using the different boundary condition.
We have therefore been unable to compare our results meaningfully with asymptotic
theories, although a comparison of the forced Korteweg-de Vries theory of Shen [10] with the
non-linear theory used here is currently under investigation for single layer flows. These
results will be published elsewhere.

The boundary integral technique used here is very versatile in that it can be used to solve
for the flow over an arbitrarily shaped obstacle. At present we are in the process of using this
approach on a different model for the atmosphere where the upper layer is now regarded as
compressible as proposed in Forbes and Belward [16]. In addition critical flow problems are
being investigated with this method, as in Forbes [14]. Such solutions are of importance in
the study of severe downslope winds in meteorology.
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